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The social networks that infectious diseases spread along are typically clustered. Because of the
close relation between percolation and epidemic spread, the behavior of percolation in such networks
gives insight into infectious disease dynamics. A number of authors have studied clustered networks,
but the networks often contain preferential mixing between high degree nodes. We introduce a class
of random clustered networks and another class of random unclustered networks with the same
preferential mixing. Percolation in the clustered networks reduces the component sizes and increases
the epidemic threshold compared to the unclustered networks.

Classical random networks contain few short cycles,
and the proportion of nodes in short cycles goes to zero
as the number of nodes increases. In contrast social net-
works typically contain many short cycles. We refer to
such networks as clustered networks. The impact of clus-
tering on percolation properties is usually difficult to cal-
culate because cycles prevent the use of branching pro-
cess arguments, but it is widely expected that clustering
significantly alters percolation.

Typically studies of infectious disease spread assume
that outbreaks begin with a single infected node. The dis-
ease travels to each susceptible neighbor independently
with probability T , the transmissibility, and the node
recovers. The process repeats. We focus on diseases for
which recovery provides immunity, so recovered nodes are
not susceptible. Typically the outbreak dies out stochas-
tically or becomes an epidemic and spreads until the
number of susceptible nodes is reduced.

It is well-established that for fixed T , epidemic spread
can be mapped to a bond percolation problem wherein
each edge is kept with probability T [5, 8, 10, 12, 13,
16]. If we perform percolation on the network and then
choose the initial infection, the disease spreads from that
initial infection along edges of the percolated network,
and so an epidemic occurs iff the initial node is in the
giant component. The size of the epidemic matches the
size of the giant component. This establishes that the
probability and fraction infected in epidemics are equal
if T is fixed and all edges are independent [22].

Because social networks frequently exhibit clustering,
a number of studies have investigated the impact of clus-
tering on epidemic problems [1, 4, 7, 9, 14, 17, 20, 21].
Some have found that clustering reduces the sizes of epi-
demics and raises the epidemic threshold. That is, clus-
tering reduces the size of giant components and raises the
percolation threshold. However, others have shown that
clustering appears to reduce the threshold. Consequently
epidemics would be possible at lower transmissibility in
the presence of clustering.

This discrepancy occurs because there are many ways
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used to generate clustered networks. It is difficult to
separate the impact of clustering from other features in-
troduced by the network generation process.

In this article we introduce a new algorithm to gener-
ate random clustered networks [23]. The clustered net-
works have correlations between degrees in a well-defined
manner which can lead to assortativity, the tendancy for
nodes to contact nodes of similar degree. We show how
to generate unclustered networks with the same correla-
tions. We can make analytic comparisons between the
two, and so clearly separate the effect of clustering from
degree correlations. We show that although the clus-
tered networks can have a reduced threshold compared
to purely random networks of the same degree distri-
bution, that is entirely an artifact of the assortativity.
Compared to an unclustered network of the same degree
correlations, the clustered networks result in smaller epi-
demics and higher epidemic threshold.

This article is organized as follows: we first intro-
duce our clustered and unclustered networks. We then
calculate and compare the epidemiological quantity R0

which measures how many new infections a typical in-
fected node causes. Finally, we calculate the final
size/probability of epidemics assuming constant T .

I. THE NETWORKS

We model our approach after standard algorithms for
Configuration Model (CM) networks [3, 15, 18]. CM net-
works are useful because all edges from a node are inde-
pendent of one another, in the sense that whether an
epidemic results from following one edge is independent
of the result along any other edge because short cycles
are negligible.

A. Clustered Networks

We begin with N nodes. To each node u we assign two
degrees, an independent edge degree kI and a triangle
degree k4. The joint probability of kI and k4 is given
by p(kI , k4). Then u will be part of k4 triangles and
have kI other edges. Each triangle and edge from u will
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be independent of other triangles and edges in the same
way that edges in CM networks are independent.

We create an independent stub list and a triangle stub
list. We place u into the independent stub list kI times
and into the triangle stub list k4 times. Once all nodes
are placed into the lists, we randomize them. We then
take the pairs of nodes in positions 2n and 2n + 1 of
the independent list and join them, and the triples in
positions 3n, 3n + 1, and 3n + 2 and join them into a
triangle. Some repeated edges or loops or short cycles
other than the triangles we impose may appear, but their
impact is negligible as N →∞ [24].

This algorithm inevitably segregates those nodes with
a high proportion of triangles from those nodes with a
low proportion of triangles. If the degrees of nodes with
many triangles differ from the degrees of nodes with few
triangles, then this effect will cause correlation of differ-
ent degrees. In order to isolate the impact of clustering,
we must be able to compare percolation in these clustered
networks with percolation in networks whose nodes are
segregated in the same way.

B. Unclustered, Segregated Networks

For comparative purposes we develop a correspond-
ing unclustered network with the same segregation as
the clustered networks. Given the joint distribution
p(kI , k4) of independent and triangle degrees, we cre-
ate a new network where nodes are assigned blue and
red degrees such that kb = kI and kr = 2k4. The joint
distribution is given by pu(kb, kr) = p(kb, kr/2).

We proceed as before. We create a blue and red list,
and pair nodes in positions 2n and 2n + 1 in the blue
list and then repeat with the red list, joining pairs, not
triples. The resulting network has the same segregation
as the corresponding clustered network, but short cycles
are negligible.

II. R0

R0 is usually defined as the number of new infections
caused by an average infected individual. Occasionally
alternate definitions are used, but in some way it repre-
sents the number of new infections attributed to an av-
erage infected individual. R0 = 1 is the threshold below
which epidemics have zero probability (i.e., the perco-
lated network has no giant component). If R0 > 1 then
epidemics are possible, but not guaranteed.

A. Clustered Networks

To simplify the analysis, first assume that u, v, and w
are members of a triangle and u becomes infectious first.
There are multiple ways that both v and w can become
infected from edges within the triangle, but they all have

the same impact on the epidemic. It is convenient to
treat infections of v and w as if they came from from u
regardless of the actual path followed.

Thus if u becomes infected, then with probability
2T 2(1−T )+T 2 = 3T 2−2T 3 it is credited with infecting
both v and w, and with probability 2T (1−T )2 it is cred-
ited with infecting just 1. With probability (1 − T )2 it
infects neither. Thus the expected number of infections
per triangle is 2T (1 + T − T 2). In spirit this approach
is similar to that of [2]. For book-keeping purposes, we
define the rank s of a node as follows: the index case has
rank 0. Each node v is then assigned rank s to be the
shortest path of infectious contacts from the index case
to v, under the rule above for crediting infections.

This allows us to define a 2 × 2 next-generation ma-
trix [6]. We separate those nodes infected along an inde-
pendent edge from those nodes infected along a triangle
edge [25]. We define cII and c4I to be the number of in-
fections that a node infected from an independent edge is
expected to cause along independent and triangle edges
respectively. We symmetrically define cI4 and c44. If
nI(s) and n4(s) are the number of nodes of rank s which
were infected along independent and triangle edges re-
spectively, then(

nI(s+ 1)
n4(s+ 1)

)
=
(
cII cI4
c4I c44

)(
nI(s)
n4(s)

)
,

where cII =
T〈K2

I−KI〉
〈KI〉 , c4I = 2T (1+T−T 2)〈KIK4〉

〈KI〉 ,

cI4 = T 〈KIK4〉
〈K4〉 , and c44 =

2T (1+T−T 2)〈K2
4−K4〉

〈K4〉 .
We give a sample calculation for c4I : With probabil-
ity kIp(kI , k4)/ 〈KI〉 an infection along an independent
edge reaches a node with degrees kI and k4. The ex-
pected number of infections along a triangle edge is
2T (1+T−T 2)k4. Thus a random node infected along an
independent edge creates 2T (1 +T −T 2) 〈KIK4〉 / 〈KI〉
infections along triangle edges.

The dominant eigenvalue of this matrix is R0. We
generally want to determine T such that R0 < 1. Sub-
stituting R0 = 1 into the characteristic equation(
T

〈
K2

I −KI

〉
〈KI〉

− R0

)2T (1 + T − T 2)

〈
K2
4 −K4

〉
〈K4〉

− R0


= 2T 2(1 + T − T 2)

〈KIK4〉2

〈KI〉 〈K4〉
(1)

gives the critical transmissibility T = Tc below which
epidemics have zero probability. At the threshold each
factor on the left hand side is at most zero.

The original network has a giant component if R0 > 1
when T = 1. Setting R0 = 1 + µ and T = 1 in (1), we
let χ(µ) and ψ be the left and right hand side respec-
tively. The concave parabola χ has a negative minimum
at µ̂ =

〈
K2

I −KI

〉
/2 〈KI〉 +

〈
K2
4 −K4

〉
/ 〈K4〉 − 1.

Clearly χ(µ) > ψ as µ → ∞. If µ̂ > 0, then the in-
termediate value theorem guarantees a positive root of
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χ(µ) = ψ (greater than µ̂). Similarly, even if the first
condition fails, χ(0) < ψ guarantees a positive root. If
both conditions fail there is no positive root. A giant
component exists if〈

K2
I −KI

〉
2 〈KI〉

+

〈
K2
4 −K4

〉
〈K4〉

> 1

and/or(〈
K2

I −KI

〉
〈KI〉

− 1

)2

〈
K2
4 −K4

〉
〈K4〉

− 1

 < 2
〈KIK4〉2

〈KI〉 〈K4〉

If the first condition applies but not the second, then the
network has enough independent and triangle edges that
a giant component exists soley within the independent
edges and another exists soley within the triangle edges.
In all other cases the second condition applies.

B. Unclustered, Segregated Network

We define nb(s) and nr(s) in the same manner, except
that triangles need not be considered. Then(

nb(s+ 1)
nr(s+ 1)

)
=
(
cbb cbr

crb crr

)(
nb

nr

)
where cbb =

T〈K2
b−Kb〉
〈Kb〉 , cbr = T 〈KbKr〉

〈Kr〉 , crb = T 〈KrKb〉
〈Kb〉 ,

and crr =
T〈K2

r−Kr〉
〈Kr〉 . Substituting R0 = 1 into the char-

acteristic equation(
T

〈
K2

b −Kb

〉
〈Kb〉

− R0

)(
T

〈
K2

r −Kr

〉
〈Kr〉

− R0

)
= T 2 〈KrKb〉2

〈Kr〉 〈Kb〉
(2)

finds the epidemic threshold. We divide (1) by
1 + T − T 2 and substitute

〈
K2

r −Kr

〉
/ 〈Kr〉 =

2
(〈
K2
4 −K4

〉
/ 〈K4〉

)
+ 1 and 〈KrKb〉2 / 〈Kr〉 〈Kb〉 =

2 〈K4KI〉 / 〈K4〉 〈KI〉 into (2). Comparing the terms
in the resulting equations shows that the threshold T in
the unclustered network is at most the threshold in the
corresponding clustered network.

III. CALCULATING GIANT COMPONENT
SIZE

To calculate the fraction of nodes in the giant compo-
nent, it suffices to calculate the probability that a random
node is not part of the giant component. These calcula-
tions have been done for CM networks by [11, 13, 16].

A. Clustered Network

We follow the approach of [13, 14]. A related approach
is given by [16].

We let f be the probability a random node u is not
part of the giant component. We have

f =
∑

kI ,k4

p(kI , k4)gkI

I g
k4
4 ,

where gI and g4 are the probabilities that an indepen-
dent edge or a triangle respectively does not connect to
the giant component. To find gI , we note that there
are two ways an edge can fail to connect u to the giant
component: It may be deleted in the percolation process
with probability 1−T , or it may be kept, but v, the node
reached, is not part of the giant component. We have

gI = 1− T + ThI

where hI is the probability that a node v reached along
an independent edge is not part of the giant component.
To calculate hI we note that v is selected proportional
to kI , but only has kI − 1 susceptible neighbors along
independent edges. We get

hI =
1
〈KI〉

∑
kI ,k4

kIp(kI , k4)gkI−1
I g

k4
4 .

For g4 we get

g4 = [1− T + Th4]2 − 2T 2(1− T )h4(1− h4) ,

where h4 is the probability a node reached along a trian-
gle edge does not connect to the giant component through
any edge not in the triangle. We find

h4 =
1
〈K4〉

∑
kI ,k4

k4p(kI , k4)gkI

I g
k4−1
4 .

The resulting system of equations for gI , g4, hI , and
h4 can be solved iteratively, and the result gives f .

B. Unclustered, Segregated Network

To find fu, the probability a random node in the un-
clustered network is not part of the giant component, we
proceed similarly. We find

fu =
∑
kr,kb

pu(kb, kr)gkb

b gkr
r

gb = 1− T + Thb

gr = 1− T + Thr

hb =
1
〈Kb〉

∑
kr,kb

kbpu(kb, kr)gkb−1
b gkr

r

hr =
1
〈Kr〉

∑
kr,kb

krpu(kb, kr)gkb

b gkr−1
r .

By iterating begining with with hb and hr both zero we
find gb and gr, from which fu can be calculated. A simi-
lar approach will find f for corresponding clustered net-
works. At each step of the iteration, g2

r ≤ g4 and gb ≤ gI ,
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FIG. 1: A comparison of different network configurations. As-
sortative mixing reduces the epidemic threshold. Clustering
reduces epidemic size.

from which we conclude fu ≤ f . Consequently the size
of the giant component is smaller in clustered networks
than in unclustered networks of the same degree distri-
bution and degree correlations.

IV. RESULTS

In figure 1 we consider outbreak spread on three net-
works, all of which have the same degree distribution.
We compare simulated epidemic sizes with predictions
from the clustered equations, the unclustered, segregated
equations, and the equations derived previously for con-
figuration model networks [11, 13, 16].

The nodes are equally distributed between degrees 2,
4, and 6. In each network the clustering is distributed
differently. In the first, p(0, 3) = 1/3, p(2, 1) = 1/3, and
p(2, 0) = 1/3. That is those nodes with degree 6 are only
in triangles, nodes of degree 4 have half of their edges in

triangles and independent edges, and nodes of degree 2
have just independent edges. High degree nodes tend to
be clustered and contact other high degree nodes. The
tendancy to contact other high degree nodes reduces the
epidemic threshold, but the clustering raises the thresh-
old.

In the second network, we take p(2, 0) = 1/6, p(0, 1) =
1/6, p(2, 1) = 1/3, p(4, 1) = 1/6, and p(0, 3) = 1/6.
This yields identical distribution of neighbor degrees for
nodes reached by either a triangle or an independent
edge. The unclustered, segregated equations yield the
same result as the configuration model equations. The
clustered calculations have smaller epidemics.

The third network is an inversion of the first. Nodes
with high degree have independent edges while nodes
with low degree are clustered. We take p(6, 0) = 1/3,
p(2, 1) = 1/3, and p(0, 1) = 1/3. Again the assortativity
reduces the epidemic threshold while clustering reduces
the epidemic size. In this particular case, it is the pref-
erence for high degree nodes (which are unclustered) to
contact one another that leads to the reduction in epi-
demic threshold, and so it is clear that the effect is due
to assortative mixing, not clustering.

V. DISCUSSION

We have introduced a new model of clustered net-
works on which we study percolation and epidemics. This
model allows us to make a number of analytic prediction
because the edges of the network can be partitioned into
sets which are independent of one another (independent
edges or triangles).

We have shown that these networks can have a lower
epidemic threshold than Configuration Model networks
with the same degree distribution. However, this is not
a consequence of clustering, but rather a consequence of
assortative mixing. The clustering of the network can
be proven to raise the epidemic threshold and reduce the
epidemic size from networks with the same degree corre-
lations, but without clustering.
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